Acta Cryst. (1972). B28, 3426

The Crystal Structure of Thallium Oxyfluoride, TIOF

BY M. VLASSE, J. GRANNEC AND J. PORTIER

Service de Chimie Minérale Structurale de la Faculté des Sciences de Bordeaux associé au C.N.R.S., 351 cours de la Libération, 33-Talence, France

(Received 6 August 1972)

Thallium oxyfluoride, TIOF, crystallizes in the cubic system, space group $1\overline{4}3m$, with 32 formula units in a cell of $a = 10.78 \pm 0.01$ Å. The intensities were collected by the Weissenberg method and the structure refined by the least-squares method to a conventional reliability index of 4.8% for 165 independent reflexions. The structure of TIOF is related to that of fluorite but with the Tl atoms in a distorted eightfold coordination.

Introduction

In recent years there has been a renewed interest in the structural and physical properties of simple oxyfluorides MOF (M=metal of the 3d, 4d and 5d, and rare-earth series). Several of these phases have been investigated in this laboratory.

A survey of the structural properties of the known MOF oxyfluorides indicates that they assume a variety of structures based on simple or complex derivatives of the fluorite and rutile structural models.

Several of the rare-earth oxyfluorides such as CeOF crystallize in the simple fluorite structure with oxygen and fluorine atoms randomly distributed on the fluorine sites (Zachariasen, 1954). Other rare-earth oxyfluorides crystallize in a rhombohedral distortion of the fluorite structure with an ordered arrangement of oxygen and fluorine (Mann & Bevan, 1970). The oxyfluorides TiOF, FeOF and VOF assume the rutile structure (Chamberland, Sleight & Cloud, 1970) while ScOF assumes the baddeleyite type (Holmberg, 1966).

The oxyfluoride of thallium was first reported by Gewecke (1909) with no further work being done until Grannec *et al.* (1970) were successful in preparing it by several methods. Sleight, Gillson & Chamberland (1970) also prepared TIOF and confirmed the results of Grannec.

A preliminary X-ray investigation indicated that TIOF crystallizes in a yet unknown structure with probably a CaF_2 sublattice. The work described here was undertaken in order to determine the structure of TIOF and further contribute to the understanding of the MOF chemistry.

Experimental

Single crystals of TIOF were prepared by the action of oxygen on TIF. Carefully dried oxygen reacts with very dry TIF under 5 kbar pressure and 500 °C to give small and irregular-shaped crystals. The crystals appear black in colour indicating a small deviation from stoichiometry and the presence of TI⁺ ions. The highest value of x in the formula $TIO_{1-x}F$ was found to be 0.07 under the prevailing experimental conditions.

The powder diffraction data of TIOF were indexed on the basis of a cubic cell with $a = 10.78 \pm 0.01$ Å. Single-crystal precession and Weissenberg photographs gave an identical value for the cell parameter. The measured density was $d_{exp} = 9.9 \pm 0.1$ g.cm⁻³ indicating a cell containing 32 motifs. The calculated density is $d_{calc} = 10.14$ g.cm⁻³. The reported error for the parameter represents the average deviation in the observed cell constant.

The Laue symmetry was found to be m3m. Systematic extinctions determined from zero and upper-layer Weissenberg and precession photographs occurred only for hkl: h+k+l=2n+1. These extinctions are consistent with space group I432, I $\overline{4}3m$ and Im3m. These results are also consistent with the observations of Sleight *et al.* (1970).

A single crystal of TIOF in the form of a small irregular sphere with an average radius of approximately 0.02 mm was chosen for data collection. This was mounted about its a axis and data were taken for h=0 to 10 using the multiple-film technique with an equi-inclination Weissenberg camera and Ni-filtered Cu radiation. A total of 740 reflexions were measured visually by comparison with a standard intensity scale. These data were scaled and averaged to give a total of 165 independent reflexions. Corrections were applied to the data for extended spot-shape and Lorentz-polarization effects. The inter-film and interlayer scaling was carried out by the usual scaling algorithm (Hamilton, Rollett & Sparks, 1965). An absorption correction was applied assuming that the crystal was spherical in shape. Since this correction was only approximate there may be an estimated error of 5% in the intensities of certain reflexions.

Structure determination and refinement

It was noted that certain obvious similarities exist between the powder patterns of TIOF and Tl₂O₃, the latter having a distorted fluorite structure with a quarter of the fluorine positions vacant. Therefore, it was decided that the structure of TIOF is probably a new type of distortion of the fluorite structure involving a doubling of its cell $(2a_{CaF2} = 10.926 \text{ Å})$. A three-dimensional Patterson function was calculaculated from which the positions of the heavy atom TI were determined. The TI-TI vectors indicated that there are atoms at positions $0,0,0; 0,\frac{1}{2},\frac{1}{2}$; and xxz with x=0.26 and z=0.04. These positions are compatible only with space group $I\overline{4}3m$, a choice which was later confirmed by the successful refinement of the structure in this space group. Since there are 32 thallium atoms in the unit cell, 24 can be placed in position 24(g), (xxz); 6 can be placed at $6(b), (0,\frac{1}{2},\frac{1}{2})$; and the remaining 2 at 2(a), (000). A structure factor calculation was carried out giving an R value:

$$R = \frac{\sum ||F_o| - |F_c||}{\sum |F_o|} = 0.14$$

and confirming the placement of the Tl atoms. A Fourier synthesis revealed peaks most probably due to the oxygen and fluorine atoms, but no distinction was made between them. The 64 fluorines and oxygens were placed in position 8(c), (xxx) and 24(g), (xxz). Several cycles of isotropic refinement using the Tl atoms alone led to an R value of 0.105. When the fluorines and oxygens were included in the isotropic refinement the reliability value was lowered to 0.068. Finally, when a number of intense low-order reflexions affected by both absorption and extinction were excluded from the refinement, it settled to a final Rvalue of 0.048. No anisotropic refinement was carried out. However, a refinement was tried with the oxygen and fluorine atoms in ordered positions with no significant difference being observed in the R value. Although no evidence was found indicating an ordered arrangement of oxygen and fluorine, this is not strictly conclusive since it would be difficult to distinguish between the two types of atoms in the presence of the very heavy thallium.

The refinement was accomplished using a fullmatrix least-squares algorithm (Busing, Martin & Levy, 1962) modified to make real and imaginary anomalous dispersion corrections. The atomic scattering factors for oxygen, fluorine, and thallium were taken from *International Tables for X-ray Crystallography* (1962). The necessary parameters used for the anomalous dispersion were those given by Dauben & Templeton (1962). Unit weights were assigned to each reflexion.

The function $\sum w(|F_o| - |F_c|)^2$ was minimized, where F_o and F_c are the observed and calculated structure amplitudes and w is the weight. For the refinement procedure an overall scale factor was used.

The final positional and thermal parameters are given in Table 1. The final structure factors for observed reflexions are shown in Table 2. Those reflexions too weak to be observed had, at the end, calculated structure factors whose magnitude did not exceed the minimum observable value in neighbouring regions of reciprocal space.

Results and discussion

The structure deduced from the above refinement is shown in Fig. 1. As was predicted earlier from the comparison of the diffraction data of TIOF and Tl_2O_3 ,

Table 1. Final positional and thermal parameters for TIOF

The standard deviations shown in parentheses here and in the text refer to the last decimal position of the respective values

	Position	x	У	z	$B(Å^2)$
Tl(1)	2(a)	0	0	0	0.34 (3)
Tl(2)	6(b)	1/2	$\frac{1}{2}$	1/2	0.31 (3)
Tl(3)	24(g)	0.2633 (1)	0.2633 (1)	0.0370 (1)	0.20(3)
O,F(1)	8(<i>c</i>)	0.363 (4)	0.363 (4)	0.363 (4)	2.1 (5)
O, F(2)	24(g)	0.100 (3)	0.100 (3)	0.345 (4)	2.2 (5)
O,F(3)	8(c)	0.145 (5)	0.145 (5)	0.145 (5)	1.1 (5)
O,F(4)	24(g)	0.391 (5)	0.391 (3)	0.145 (5)	1.1 (5)

the structure of TIOF is indeed a rather distorted version of the fluorite structure. The calcium atoms are replaced here by thallium and the fluorine positions are occupied by either oxygen or fluorine. The thallium atom is situated in the centre of a distorted cube of oxygen and fluorine atoms. The basic arrangement of Tl in the TIOF unit cell is very much the same as that of Tl_2O_3 (Pauling & Shappell, 1930) and therefore explains the great similarity of their powder diffraction patterns (see Table 3). The very same arrangement of Tl is found in two other compounds possessing the distorted fluorite structure, TiTe₃O₈ and UTe₃O₉ (Galy & Meunier, 1971). These four compounds all have a CaF₂ cationic sublattice with $a/2 = a_{CaF_2}$.

In the above phases a lowering in space group symmetry as compared with Fm3m of CaF₂ is noted, and also a doubling of the fluorite parameter.

The coordination polyhedra surrounding the Tl atoms vary in their of distortion depending on the kind of Tl atom involved (see Fig. 2). The atoms Tl(1) and

Table 2. Observed and calculated structure factors forTIOF

H	ĸ	ι	FO	FC	н	ĸ	L	fu	FC	н	ĸ	L	+ 0	FC
υ	c	2	102	76	Ļ	2	13	212	266	3	3	6	689	683
0	ů,	•	1586	1581	1			240	317	3	3	. 8	60	110
0	Ň	2	1001	245		;	2	2443	521			10	603	584
	Ň	10	380	362			10	178	373		2	12	180	211
ŏ	ŏ	12	377	349	- i	5	12	5.4	44	í		ż	218	234
Ū,	i	- ï	90	45	i	4	5	512	534	5	4	ġ.	383	\$74
ò	i.	ŝ	81	69	- i	4	1	221	245	3	4	11	145	145
ú	1	5	289	274	1	4	9	412	403	3	5	6	e 41	ذاد
U	1	7	224	249	1	4	11	278	244	3	5	8	343	386
0	1	. ?	218	206	1		13	252	257	3	5	10	173	121
6	÷.	11	203	237	+	?		211	197	3	?	12	1.41	111
Š.		.;	96	47	1	- 2	ıõ	124	107		2		544	587
ő	5	1	157	140	:		12	367	401	;	2		207	205
Ū	ż	6	489	437	- i	5	.,	499	522	1	ĭ		46	
o	2	8	461	479	i	6	9	235	21 #	3	ì	10	550	523
Ú	۷	10	636	627	4	6	11	303	331	3	8	÷	\$25	561
0	2	15	610	000	1	7	8	214	1 +5	3	¥	10	151	157
0	1	3	248	257	1	_!	10	413	403	4	4	4	1110	1104
ž		2	105	152				495	475	4			89	41
ă	;	á	100	107			10	211	213		2		640	637
č	1		377	213	;	;	19	1977	133	2	2	10	101	140
ŏ	í		358	363	2	;	-			2	- 2	15	511	£
ū	4	4	1592	1616	2	ž	6	1250	1263	÷	5	i	270	215
0	4	6	122	9B	2	2	8	2 40.	284	4	5		354	303
3	4	8	743	751	۲	۷	10	522	557	4	5	11	10	1 +1
0	4	10	256	200	ż	2	12	290	291	4	6	6	446	466
0	•	15	297	\$ 40	2	3	\$	403	409	4	6	Ą	251	314
0	2	2	78	38	2		2	161	148	4	6	10	557	5/4
	2		15					205	2/6		-		10	11
	2		20	203		1		100	204	2	;		231	20
ň	6		544	5 86	2	ŝ	13	227	221	-	÷	·:	3.81	
0	6	A	217	468	ž	4	4	279	246	4	8	10	176	172
0		10	705	617	2	4	6	217	248	4	9	. 9	378	376
	۵	12	444	425	2	4	8	281	285	5	5	ė	- 71	144
0	7	1	161	133	2	4	10	51C	511	5	•	8	58U	1.70
Ċ,		. 9	251	214	۷		12	578	647	5	5	10	210	210
Ŷ	7	11	56	43	4	?	2	165	192		6	,	310	\$12
	2	10	344	340	- ÷	2			116	2			54	39
2	2	10	1.45	1.81	- 5			123	412		°,	41	240	253
í	- î	;	187	192	- 2	6		281	777	ś	;	10	233	235
÷	i	- 2	496	565	2	ŏ	8	75		ś	8		444	20h
- i	ī	6	384	416	ž	6	10	374	371	6	ŏ	6	585	606
1	i.	H.	500	512	- 2	6	12	150	141	6	6	ĥ	206	200
1	1	10	149	124	2	1	'	6 94	256	6	6	10	698	31.5
1	1	12	249	240	2	,	9	1 3 1	117	6	,	,	524	511
	2	3	256	271	2	'	11	316	105	6	7	э	1 44	182
1	4	2	286	211	4	2	. 1	634	654	6	8		• 58	479
4	2		\$ 36	336	~	8	10	28.)	261	?	7	4	131	134
	- ;		125	350			4	241	26.6			2	140	157
•	~				,	,	-	633	6 3 4	-			317	535

Table 3. Crystallographic data of

Tl ₂ C)₃, TiTe₃O ₈ , U	Te ₃ O ₉ and Th	OF
Tl_2O_3	TiTe ₃ O ₈	UTe ₃ O ₉	TIOF
Ia3	Ia3	Pa3	I 4 3m
a=10·54 Å	<i>a</i> =10.96 Å	a=11·37 Å	a = 10.78 Å
8 Tl in 8(a)	8 Ti in 8(a)	4 U in 4(a)	2 Tl in 2(a)
24 Tl in $24(d)$	24 Te in 24(<i>d</i>)	4 U in 4(b)	6 Tl in 6(<i>b</i>)
		24 Te in $24(d)$	24 Tl in 24(g)

Tl(2) in positions 2(a) and 6(b) form much more regular polyhedra in comparison to Tl(3) in 24(g). The Tl(1)or Tl(2) cubes contain either eight longer bonds [2.52 (2) Å to 2.71 (2) Å] or eight shorter bonds $[2\cdot26 (2) \text{ Å to } 2\cdot28 (2) \text{ Å}]$, all within the normal distribution of Tl-(O, F) bond lengths. On the contrary, the Tl(3) atoms form polyhedra (see Fig. 2) in which there are four short bonds [2.10 (2) Å to 2.27 (2) Å], three bonds of medium length [2.49 (2) Å to 2.69 (2) Å]and one longer bond [2.94 (2) Å]. This spatial arrangement of bonds around the Tl(3) atom seems to be very similar to that found in TiTe₃O₈ and UTe₃O₉ for the Te atom (Table 3). A further analogy is found in the case of ScOF (Holmberg, 1966) whose structure is a monoclinic distortion of the CaF₂ atomic arrangement, with Sc in a sevenfold coordination of 4 short bonds and 3 others at a slightly longer distance.

The large range of Tl-(O, F) bond distances observed here [2·10 (2) Å to 2·94 (2) Å], as well as in other thallium-containing compounds such as Rb_3TlF_6 (1·96 Å) (Bode & Voss, 1957) and NaTlO₂ (4·12 Å) (Hoppe & Werding, 1961) could be due to the significant polarizing effect of the thallium ion, as well as to covalency effects (Babel, 1967).

There exists in the structure of TIOF a network of TI-TI bonds, in the three dimensions, ranging from 3.445 (5) to 3.667 (5) Å, and comparable in length to the TI-TI distance observed in α -thallium ($\simeq 3.50$ Å). This could explain the metallic conductivity observed by Grannec *et al.* (1970) in non-stoichiometric TIOF,

Fig. 1. Projection of the structure of TIOF on the (001) plane.

Fig. 2. Coordination polyhedra for several thallium atoms in the TIOF structure.

which is possibly due to an overlap of the 6s orbitals of Tl, and which leads to a partially filled conduction band.

References

BABEL, D. (1967). Structure and Bonding, 3, 61.

- BAENZIGER, N. C., HOLDEN, J. R., KNUDSON, G. E. & POPOV, A. I. (1954). J. Amer. Chem. Soc. 76, 4734.
- BODE, H. & VOSS, E. (1957). Z. anorg. allgem. Chem. 290, 1.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). A Fortran Crystallographic Least-Squares Program. ORNL-TM-305. Oak Ridge, Tennessee.
- CHAMBERLAND, B. L., SLEIGHT, A. W. & CLOUD, W. H. (1970). J. Solid State Chem. 2, 49.
- DAUBEN, C. H. & TEMPLETON, D. H. (1962). International Tables for X-ray Crystallography, Vol. III, p. 214. Birmingham: Kynoch Press.
- GALY, J. & MEUNIER, G. (1971). Acta Cryst. B27, 608.
- GEWECKE, J. (1909). Liebigs Ann. 336, 218.
- GRANNEC, J., PORTIER, J., VON DER MÜHL, R., DEMAZEAU, G. & HAGENMULLER, P. (1970). *Mat. Res. Bull.* 5, 185.
- HAMILTON, W. C., ROLLETT, J. S. & SPARKS, R. A. (1965). Acta Cryst. 18, 129.
- HOLMBERG, B. (1966). Acta Chem. Scand. 20, 1082.
- HOPPE, R. & WERDING, G. (1961). Z. anorg. allgem. Chem. 307, 174.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- MANN, A. W. & BEVAN, D. J. M. (1970). Acta Cryst. B26, 2129.
- PAULING, L. & SHAPPELL, M. D. (1930). Z. Kristallogr. 75, 128.
- SLEIGHT, A. W., GILLSON, J. L. & CHAMBERLAND, B. L. (1970). Mat. Res. Bull. 5, 807.
- ZACHARIASEN, W. H. (1951). Acta Cryst. 4, 231.
- ZALKIN, A. & TEMPLETON, D. H. (1953). J. Amer. Chem. Soc. 75, 2453.